Photoelectric effect

The photoelectric effect is the emission of electrons or other free carriers when light shines on a material. Electrons emitted in this manner can be called photo electrons. This phenomenon is commonly studied in electronic physics, as well as in fields of chemistry, such as quantum chemistry or electrochemistry.

According to classical electromagnetic theory, this effect can be attributed to the transfer of energy from the light to an electron. From this perspective, an alteration in the intensity of light would induce changes in the kinetic energy of the electrons emitted from the metal. Furthermore, according to this theory, a sufficiently dim light would be expected to show a time lag between the initial shining of its light and the subsequent emission of an electron. However, the experimental results did not correlate with either of the two predictions made by classical theory.

Emission mechanism:

The photons of a light beam have a characteristic energy proportional to the frequency of the light. In the photoemission process, if an electron within some material absorbs the energy of one photon and acquires more energy than the work function (the electron binding energy) of the material, it is ejected. If the photon energy is too low, the electron is unable to escape the material. Since an increase in the intensity of low-frequency light will only increase the number of low-energy photons sent over a given interval of time, this change in intensity will not create any single photon with enough energy to dislodge an electron. Thus, the energy of the emitted electrons does not depend on the intensity of the incoming light, but only on the energy (equivalent frequency) of the individual photons. It is an interaction between the incident photon and the outermost electrons.

Electrons can absorb energy from photons when irradiated, but they usually follow an “all or nothing” principle. All of the energy from one photon must be absorbed and used to liberate one electron from atomic binding, or else the energy is re-emitted. If the photon energy is absorbed, some of the energy liberates the electron from the atom, and the rest contributes to the electron’s kinetic energy as a free particle.

Experimental observations of photoelectric emission

The theory of the photoelectric effect must explain the experimental observations of the emission of electrons from an illuminated metal surface.

For a given metal, there exists a certain minimum frequency of incident radiation below which no photoelectrons are emitted. This frequency is called the threshold frequency. Increasing the frequency of the incident beam, keeping the number of incident photons fixed (this would result in a proportionate increase in energy) increases the maximum kinetic energy of the photoelectrons emitted. Thus the stopping voltage increases. The number of electrons also changes because of the probability that each photon results in an emitted electron are a function of photon energy. If the intensity of the incident radiation of a given frequency is increased, there is no effect on the kinetic energy of each photoelectron.

Above the threshold frequency, the maximum kinetic energy of the emitted photoelectron depends on the frequency of the incident light, but is independent of the intensity of the incident light so long as the latter is not too high.

For a given metal and frequency of incident radiation, the rate at which photoelectrons are ejected is directly proportional to the intensity of the incident light. An increase in the intensity of the incident beam (keeping the frequency fixed) increases the magnitude of the photoelectric current, although the stopping voltage remains the same.

The time lag between the incidence of radiation and the emission of a photoelectron is very small, less than 10−9 second.

The direction of distribution of emitted electrons peaks in the direction of polarization (the direction of the electric field) of the incident light, if it is linearly polarized.

Mathematical description:

In 1905, Einstein proposed an explanation of the photoelectric effect using a concept first put forward by Max Planck that light waves consist of tiny bundles or packets of energy known as photons or quanta.

Diagram of the maximum kinetic energy as a function of the frequency of light on zinc

The maximum kinetic energy  of an ejected electron is given by

where  is the Planck constant and  is the frequency of the incident photon. The term  is the work function (sometimes denoted , or  , which gives the minimum energy required to remove a delocalised electron from the surface of the metal. The work function satisfies

where  is the threshold frequency for the metal. The maximum kinetic energy of an ejected electron is then

Kinetic energy is positive, so we must have  for the photoelectric effect to occur.

Stopping potential:

The relation between current and applied voltage illustrates the nature of the photoelectric effect. For discussion, a light source illuminates a plate P, and another plate electrode Q collects any emitted electrons. We vary the potential between P and Q and measure the current flowing in the external circuit between the two plates.

 Work function and cut off frequency

If the frequency and the intensity of the incident radiation are fixed, the photoelectric current increases gradually with an increase in the positive potential on the collector electrode until all the photoelectrons emitted are collected. The photoelectric current attains a saturation value and does not increase further for any increase in the positive potential. The saturation current increases with the increase of the light intensity. It also increases with greater frequencies due to a greater probability of electron emission when collisions happen with higher energy photons.

If we apply a negative potential to the collector plate Q with respect to the plate P and gradually increase it, the photoelectric current decreases, becoming zero at a certain negative potential. The negative potential on the collector at which the photoelectric current becomes zero is called the stopping potential or cut off potential

i. For a given frequency of incident radiation, the stopping potential is independent of its intensity.

ii. For a given frequency of incident radiation, the stopping potential is determined by the maximum kinetic energy  of the photoelectrons that are emitted. If qe is the charge on the electron and  is the stopping potential, then the work done by the retarding potential in stopping the electron is , so we have


we see that the stopping voltage varies linearly with frequency of light, but depends on the type of material. For any particular material, there is a threshold frequency that must be exceeded, independent of light intensity, to observe any electron emission.

Stay tuned for updates Like & follow us on:

Official E-Mail Id :

FB Page:

Whatsapp Link:

Youtube Channel Link:

Stay tuned for More updates from ——-TeamMechgin


MechGIN: A platform for all Engineering students who are unknown about technical study of the engineering. Here the site provides you full current affairs in scientific education role of your studies.

More Posts - Website

Follow Me:
TwitterFacebookLinkedInPinterestGoogle PlusYouTube