Photovoltaic systems

A photovoltaic system, or solar PV system is a power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to absorb and directly convert sunlight into electricity, a solar inverter to change the electric current from DC to AC, as well as mounting, cabling and other electrical accessories. PV systems range from small, roof-top mounted or building-integrated systems with capacities from a few to several tens of kilowatts, to large utility-scale power stations of hundreds of megawatts. Nowadays, most PV systems are grid-connected, while stand-alone systems only account for a small portion of the market.

  • Rooftop and building integrated systems

Rooftop PV on half-timbered house

Photovoltaic arrays are often associated with buildings: either integrated into them, mounted on them or mounted nearby on the ground. Rooftop PV systems are most often retrofitted into existing buildings, usually mounted on top of the existing roof structure or on the existing walls. Alternatively, an array can be located separately from the building but connected by cable to supply power for the building. Building-integrated photovoltaics (BIPV) are increasingly incorporated into the roof or walls of new domestic and industrial buildings as a principal or ancillary source of electrical power. Roof tiles with integrated PV cells are sometimes used as well. Provided there is an open gap in which air can circulate, rooftop mounted solar panels can provide a passive cooling effect on buildings during the day and also keep accumulated heat in at night. Typically, residential rooftop systems have small capacities of around 5–10 kW, while commercial rooftop systems often amount to several hundreds of kilowatts. Although rooftop systems are much smaller than ground-mounted utility-scale power plants, they account for most of the worldwide installed capacity.
  • Concentrator photovoltaics:
Concentrator photovoltaics (CPV) is a photovoltaic technology that contrary to conventional flat-plate PV systems uses lenses and curved mirrors to focus sunlight onto small, but highly efficient, multi-junction (MJ) solar cells. In addition, CPV systems often use solar trackers and sometimes a cooling system to further increase their efficiency. Ongoing research and development is rapidly improving their competitiveness in the utility-scale segment and in areas of high solar insolation.
  • Photovoltaic thermal hybrid solar collector
Photovoltaic thermal hybrid solar collector (PVT) are systems that convert solar radiation into thermal and electrical energy. These systems combine a solar PV cell, which converts sunlight into electricity, with a solar thermal collector, which captures the remaining energy and removes waste heat from the PV module. The capture of both electricity and heat allow these devices to have higher exergy and thus be more overall energy efficient than solar PV or solar thermal alone.
  • Power stations

 Satellite image of the Topaz Solar Farm
Many utility-scale solar farms have been constructed all over the world. As of 2015, the 579-megawatt (MWAC) Solar Star is the world’s largest photovoltaic power station, followed by the Desert Sunlight Solar Farm and the Topaz Solar Farm, both with a capacity of 550 MWAC, constructed by US-company First Solar, using CdTe modules, a thin-film PV technology. All three power stations are located in the Californian desert. Many solar farms around the world are integrated with agriculture and some use innovative solar tracking systems that follow the sun’s daily path across the sky to generate more electricity than conventional fixed-mounted systems. There are no fuel costs or emissions during operation of the power stations.
  • Rural electrification:
Developing countries where many villages are often more than five kilometers away from grid power are increasingly using photovoltaics. In remote locations in India a rural lighting program has been providing solar powered LED lighting to replace kerosene lamps. The solar powered lamps were sold at about the cost of a few months’ supply of kerosene. Cuba is working to provide solar power for areas that are off grid. More complex applications of off-grid solar energy use include 3D printers. RepRap 3D printers have been solar powered with photovoltaic technology, which enables distributed manufacturing for sustainable development. These are areas where the social costs and benefits offer an excellent case for going solar, though the lack of profitability has relegated such endeavors to humanitarian efforts. However, in 1995 solar rural electrification projects had been found to be difficult to sustain due to unfavorable economics, lack of technical support, and a legacy of ulterior motives of north-to-south technology transfer.
  • Standalone systems:
Until a decade or so ago, PV was used frequently to power calculators and novelty devices. Improvements in integrated circuits and low power liquid crystal displays make it possible to power such devices for several years between battery changes, making PV use less common. In contrast, solar powered remote fixed devices have seen increasing use recently in locations where significant connection cost makes grid power prohibitively expensive. Such applications include solar lamps, water pumps, parking meters, emergency telephones, trash compactors, temporary traffic signs, charging stations, and remote guard posts and signals.
  • Floatovoltaics:
In May 2008, the Far Niente Winery in Oakville, CA pioneered the world’s first “floatovoltaic” system by installing 994 photovoltaic solar panels onto 130 pontoons and floating them on the winery’s irrigation pond. The floating system generates about 477 kW of peak output and when combined with an array of cells located adjacent to the pond is able to fully offset the winery’s electricity consumption. The primary benefit of a floatovoltaic system is that it avoids the need to sacrifice valuable land area that could be used for another purpose. In the case of the Far Niente Winery, the floating system saved three-quarters of an acre that would have been required for a land-based system. That land area can instead be used for agriculture. Another benefit of a floatovoltaic system is that the panels are kept at a lower temperature than they would be on land, leading to a higher efficiency of solar energy conversion. The floating panels also reduce the amount of water lost through evaporation and inhibit the growth of algae.
  • In transport

Solar Impulse 2, a solar aircraft

PV has traditionally been used for electric power in space. PV is rarely used to provide motive power in transport applications, but is being used increasingly to provide auxiliary power in boats and cars. Some automobiles are fitted with solar-powered air conditioning to limit interior temperatures on hot days. A self-contained solar vehicle would have limited power and utility, but a solar-charged electric vehicle allows use of solar power for transportation. Solar-powered cars, boats and airplanes have been demonstrated, with the most practical and likely of these being solar cars. The Swiss solar aircraft, Solar Impulse 2, achieved the longest non-stop solo flight in history and plan to make the first solar-powered aerial circumnavigation of the globe in 2015.
  • Telecommunication and signaling:
Solar PV power is ideally suited for telecommunication applications such as local telephone exchange, radio and TV broadcasting, microwave and other forms of electronic communication links. This is because, in most telecommunication application, storage batteries are already in use and the electrical system is basically DC. In hilly and mountainous terrain, radio and TV signals may not reach as they get blocked or reflected back due to undulating terrain. At these locations, low power transmitters (LPT) are installed to receive and retransmit the signal for local population.
  • Spacecraft applications:

Part of Juno’s solar array

Solar panels on spacecraft are usually the sole source of power to run the sensors, active heating and cooling, and communications. A battery stores this energy for use when the solar panels are in shadow. In some, the power is also used for spacecraft propulsion—electric propulsion.[129] Spacecraft were one of the earliest applications of photovoltaics, starting with the silicon solar cells used on the Vanguard 1 satellite, launched by the US in 1958. Since then, solar power has been used on missions ranging from the MESSENGER probe to Mercury, to as far out in the solar system as the Juno probe to Jupiter. The largest solar power system flown in space is the electrical system of the International Space Station. To increase the power generated per kilogram, typical spacecraft solar panels use high-cost, high-efficiency, and close-packed rectangular multi-junction solar cells made of gallium arsenide (GaAs) and other semiconductor materials.
  • Specialty Power Systems:
Photovoltaics may also be incorporated as energy conversion devices for objects at elevated temperatures and with preferable radiative emissivities such as heterogeneous combustors.

Stay tuned for updates Like & follow us on:

Official E-Mail Id :

FB Page:

Whatsapp Link:

Youtube Channel Link:

Stay tuned for More updates from ——-TeamMechgin


MechGIN: A platform for all Engineering students who are unknown about technical study of the engineering. Here the site provides you full current affairs in scientific education role of your studies.

More Posts - Website

Follow Me:
TwitterFacebookLinkedInPinterestGoogle PlusYouTube